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Foreword

This report summarizes the research accomplishments performed under the NASA
langley Research Center Grant No. NAG 1-1749, entitled: \Application of the Spec-
tral Element Method to Interior Noise Problems," for the period August 1, 1995 to
July 31, 1998. The primary e�ort of this research project was focused on the devel-
opment of analytical methods for the accurate prediction of structural acoustic noise
and response. Of particular interest was the development of curved frame and shell
spectral elements for the e�cient computation of structural response and of schemes
to match this to the surrounding 
uid.
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Introduction

This report summarizes research to develop a capability for analysis of interior

noise in enclosed structures when acoustically excited by an external random source.

Of particular interest was the application to the study of noise and vibration trans-

mission in thin-walled structures as typi�ed by aircraft fuselages.

The basic idea of the research is to reformulate the structure-
uid interaction

problem using a matrix methodology based on the spectral element method. In

this way, a wave analysis of the problem is retained, yet complex structures can be

handled in a convenient manner. The analysis, which is formulated in the frequency

domain, is capable of providing detailed information on the response (in either the

time or frequency domains) to broad band excitation in any frequency range. The

two signi�cant features of the problem, namely; that the loadings on the structure

are distributed and that the structures themselves form enclosed cavities (or cabins),

are handled well by this formulation.

The spectral element method is a powerful tool for wave propagation problems. It

is a matrix method based on wave solutions that exactly satisfy the governing equa-

tions and the boundary conditions. That is, the method exactly models the inertia

properties and therefore the elements can be large, in fact spanning the region between

discontinuities. Consequently, the system size is much smaller compared to a conven-

tional element formulation. Furthermore, the e�ects of damping, viscoelasticity, and

higher order structural models can be easily incorporated in the formulation.

This report focuses on three related topics. The �rst concerns the development of a

curved frame spectral element, the second shows how the spectral element method for

wave propagation in folded plate structures is extended to problems involving curved

segmented plates. These are of signi�cance because by combining these curved spec-

tral elements with previously presented 
at spectral elements, the dynamic response

of geometrically complex structures can be determined. The third topic shows how

spectral elements, which incorporate the e�ect of 
uid loading on the structure, are

developed for analyzing acoustic radiation from dynamically loaded extended plates.



Chapter 1

Deep Curved Beams and Rings

Using the curved beam equivalent of Timoshenko beam theory, the spectral element

method is extended to problems involving curved members. By combining these

curved beam spectral elements with previously presented straight spectral elements,

the dynamic response of geometrically complex structures can be determined. Of

particular interest here is the coupling that naturally occurs between the axial and

transverse degrees of freedom and how it a�ects the element formulation. As an

example of the utility of this element, the point excitation of an in�nite curved beam

and a closed ring is demonstrated.

1.1 Introduction

There is considerable intrinsic interest in waves in curved beams because of their use

as arches, helical springs and rings, in such structures as aircraft fuselages and ship

hulls. Some idea of the range of applications can be found in References [1, 2, 3, 4].

There is also the special case of negligible bending sti�ness which corresponds to waves

in cables and power lines; an interesting analysis of this is given in Reference [5]. This

chapter is a continuation of References [6, 7, 8] which developed a matrix methodology

for analyzing wave propagation in complex frame structures. Speci�cally, we extend

the spectral element method to include deep curved beam elements.

Two elements are derived: a semi-in�nite element, termed a throw-o� element,

and a �nite length element, termed a two-noded element. The throw-o� element is

important in wave propagation problems since it is used to model remote boundaries

which do not re
ect waves. Both of these elements exactly model the distribution of

mass and rotational inertia and thus can be of any length. While it is possible to

model a curved beam as a collection of straight or curved segments, as in conventional

element formulations [9, 10], the fact that spectral elements can be very long means

2
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that we need use only one element between any two joints or points of discontinuity.

An interesting aspect of curved beams is the coupling that occurs between the

longitudinal and 
exural degrees of freedom. The coupling is interesting in the fact

that purely axial or transverse excitations will cause both longitudinal and 
exural

responses in the curved beam. Unlike straight beam modeling where the coupling

between the degrees of freedom occurs only at attachment nodes, the curved beam

possesses coupling at the di�erential level. That is, the longitudinal and 
exural

motion of the curved beam are coupled through the equations of motion, and results

in a spectrum relation that is relatively complicated. Therefore a portion of this

chapter is devoted to discussing the spectrum relation in some detail.

While curved elements can be combined with straight elements to form geometri-

cally complex structures, we will not emphasize that aspect of their use. Rather, we

wish to focus speci�cally on some of the wave propagation aspects. We look at two

problems: an in�nite curved beam and a closed ring. The in�nite beam is used to

demonstrate the coupling between the longitudinal and 
exural degrees of freedom.

The ring illustrates how the point excitation of a simple structure can be viewed as

either a wave propagation problem, a vibrations problem, or a rigid body motion

problem.

1.2 Spectral Analysis of a Deep Curved Beam

Consider the curved beam segment shown in Figure 1.1. Following Reference [10],

the 2-D deformation of the beam can be approximated as

�u(s; y; t) � u(s; t)� y�(s; t) ; �v(s; y; t) � v(s; t)

where u(s; t) is the mean mid-plane circumferential displacement, v(s; t) is the radial

displacement, and �(s; t) is a rotation about the mid-plane. This deformation leads

to the non-zero strains

��ss =
@u

@s
� v

R
� y

@�

@s
; �
sy =

u

R
+
@v

@s
� �

Other curved beam theories have slightly di�erent expressions for these strains; the

present theory is closest to that of the Timoshenko straight beam [11]. The most

signi�cant aspect of this strain-displacement relation is the non-zero centroidal strain

(at y = 0) even if v is the only de
ection. This will give rise to the coupling of the

two displacements.
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The strain energy for the small segment of curved beam in plane stress is

U = 1
2

Z
8

[E��2ss+G�

2
sy] d8 = 1

2

Z
L
[EA(

@u

@s
� v

R
)2+EI(

@�

@s
)2+GAK1(

u

R
+
@v

@s
��)2] ds

where E is the Young's modulus, G is the shear modulus; EA, GAK1 and EI are the

extensional, shear and bending sti�nesses, respectively; 8 is the volume and L the

segment length. Note that, as is commonly done, we have associated an adjustable

K1 with the shear sti�ness. Typically, this can be taken close to unity; Reference [11]

gives a discussion of the choice of K1 for the 
at Timoshenko beam. The total kinetic

energy is

T = 1
2

Z
8

�[ _�u
2
(s; y; t) + _�v

2
(s; y; t)] d8 = 1

2

Z
L
[�A _u2 + �IK2

_�2 + �A _v2] ds

where � is the material density. Here too we introduce an adjustable parameter K2

to be associated with the rotary inertia. An application of Hamilton's principle [12]

using the variations with respect to �u, �v, and ��, leads to the three governing

equations of motion (for R= locally constant)

EA

"
@2u

@s2
� 1

R

@v

@s

#
�GAK1

"
u

R2
+

1

R

@v

@s
� �

R

#
= �A

@2u

@t2
+ �A

@u

@t

EA

"
1

R

@u

@s
� v

R2

#
+GAK1

"
1

R

@u

@s
+
@2v

@s2
� @�

@s

#
= �A

@2v

@t2
+ �A

@v

@t

EI

"
@2�

@s2

#
+GAK1

"
u

R
+
@v

@s
� �

#
= �IK2

@2�

@t2
+ �IK2

@�

@t
(1.1)

where we have added some viscous damping �. The associated natural boundary

conditions are given in terms of the resultant forces

F �
Z
A
�ssdA = EA

"
@u

@s
� v

R

#
; V �

Z
A
�sydA = GAK1

"
u

R
+
@v

@s
� �

#
(1.2)

and moment

M � �
Z
A
�ssy dA = EI

"
@�

@s

#
(1.3)

acting on the cross-section, where the integration is over the cross-sectional area A.

When R becomes very large, the straight deep beam and elementary rod theories are

recovered.

Spectral analysis assumes solutions of the form

u(s; t) =
X

û(s; !)ei!t ; v(s; t) =
X

v̂(s; !)ei!t ; �(s; t) =
X

�̂(s; !)ei!t

(1.4)
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where the summations are over frequency. When these are substituted into the govern-

ing di�erential equations, we get a set of ordinary di�erential equations with constant

coe�cients. These have solutions of the form

û(s; !) = uoe
�iks ; v̂(s; !) = voe

�iks ; �̂(s; !) = �oe
�iks

where k = k(!) is the wavenumber. In this representation, the amplitudes uo, vo,

�o, and the wavenumber are as yet undetermined. On substitution these lead to the

homogeneous system of equations

2
64 �1 �GAK1=R

2 (EA+GAK1)ik=R GAK1=R
�(EA +GAK1)ik=R �2 � EA=R2 ikGAK1

GAK1=R �ikGAK1 �3 �GAK1

3
75
8><
>:
uo
vo
�o

9>=
>; = 0 (1.5)

with

�1 � �EAk2 + �A�!2 ; �2 � �GAK1k
2 + �A�!2 ; �3 � �EIk2 + �IK2�!

2

and �!2 � !2 � i!�=�. For a non-trivial solution, the determinant must be zero and

this allows us to determine k. This has six solutions in all, but since only k2 terms

appear, there are three basic modes appearing as �km pairs.

For each wavenumber km, Equation (1.5) gives us the relation among the ampli-

tudes. This is homogeneous and therefore, at best, we can only get amplitude ratios.

For example, we can solve for the remaining two terms as a function of uo. Let us

write the solutions at a particular wavenumber km as

8><
>:
uo
vo
�o

9>=
>;
m

=

8><
>:

1
�v
��

9>=
>;
m

uo = f�gmuo

where the symbol � indicates an amplitude ratio. Although the vector f�g shown is

normalized with respect to uo, it is possible for other modal vectors to be normalized

di�erently. This must be done for each mode km and hence there are six vectors. We

choose to represent these as

[ � ] = [[�A]; [�B ]] �
2
64
8><
>:

1
�v
��

9>=
>;

1

8><
>:

�u
1
��

9>=
>;

2

8><
>:

�u
1
��

9>=
>;

3

8><
>:

1
�v
��

9>=
>;

4

8><
>:

�u
1
��

9>=
>;
5

8><
>:

�u
1
��

9>=
>;

6

3
75

where the [3�3] partitions [�A] and [�B ] are evaluated at +km and �km, respectively.
The matrices [�A] and [�B ] are referred to as modal matrices. They are fully popu-

lated matrices and typically are not symmetric. The normalizations are arranged so
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that if we set �12 = �13 = �21 = �31 = 0, the uncoupled straight beam solutions are

recovered.

For each mode, the corresponding amplitude uom is undetermined; to make the

notation resemble what we have already used, we will label each of the theseA; B; � � �.
The solution for the displacements can then be expressed as

û(s) = A�11e
�ik1s +B�12e

�ik2s + � � �+E�15e
+ik2s + F�16e

+ik3s

v̂(s) = A�21e
�ik1s +B�22e

�ik2s + � � �+E�25e
+ik2s + F�26e

+ik3s

�̂(s) = A�31e
�ik1s +B�32e

�ik2s + � � �+E�35e
+ik2s + F�36e

+ik3s (1.6)

where the terms �ij are the amplitude ratios. The coe�cients A;B; � � � ;F are to be

determined from the boundary conditions.

It is apparent that the spectrum relation plays a central role is the solution, and

since the characteristic equation is rather complicated, we look at its solution in

greater detail next.

1.3 Discussion of the Spectrum Relations

The characteristic equation to determine the wavenumber k is formed by setting

the determinant of system (1.5) to zero. To simplify the expressions, �rst introduce

the wavenumbers k2P � �A�!2=EA, k2S � �A�!2=GAK1, k
2
I � �I �!2=EI, and k4B �

�A�!2=EI. On expansion, we �nd the characteristic equation can be rearranged as

k6 + a2k
4 + a1k

2 + a0 = 0 (1.7)

where

a2 = �(k2P + k2S + k2I + 2=R2)

a1 = k2Pk
2
S + k2Pk

2
I + k2Sk

2
I � k4B � (k2P + k2S � 2k2I)=R

2 + 1=R4

a0 = (�k2P + 1=R2)(k2Sk
2
I � k4B � k2I=R

2)

This has six solutions in all, but since only k2 terms appear, there are three basic

modes appearing as �ki: one associated with the longitudinal behavior and two

associated with the 
exural behavior. This can be seen by noting that for very large

R the characteristic equation can be factored into

(k2 � k2P )[k
4 � (k2S + k2I)k

2 � (k4B � k2Sk
2
I)] = 0

where the term in parenthesis is the characteristic equation for the longitudinal motion

in a rod [11] and the term in the square brackets is the characteristic equation for
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the uncoupled 
exural response of a Timoshenko beam [6]. In general, of course, the

modes are coupled and it is not proper to speak of a longitudinal mode or a 
exural

mode.

Before we solve for the spectrum relations, it is bene�cial to check certain features.

First, we see if there is a cut-o� frequency; set k = 0 in the characteristic equation to

get

a0 = (�k2P + 1=R2)(k2Sk
2
I � k4B � k2I=R

2) = 0

After setting the damping to zero, this yields the two cut-o� frequencies,

!c1 =
1

R

s
EA

�A
=
co
R
; !c2 =

s
GAK1

�I
+
GAK1

�AR2
� 2

co
h

where h is the depth of the beam. The presence of a cut-o� frequency is typical of

elastically coupled systems. It is interesting to note that !c1 depends on the radius of

curvature, while !c2 is dominated by the beam depth. It is clear from the expression

for !c2 that for slender beams, this cut-o� frequency is very large; this cut-o� is

associated with the Timoshenko second mode.

Now look at when the frequency is zero, the characteristic equation can be factored

as

k2(k2 � 1

R2
)(k2 � 1

R2
) = 0

Only one root goes through zero, the others are a double root on the real axis.

We must solve a cubic equation in order to get the full behavior of the spectrum

relations. The formulas for doing this are more complicated than for the quadratic

equation and can be found in Appendix A. Figure 1.2 shows the �rst three spectrum

relations, these correspond to propagating waves, and are characterized by a negative-

only imaginary component. To exagerate the coupling, the plot is for an aluminum

beam that is 100mm (4:0 in) deep with a radius of curvature, R = 100mm (4:0 in).

We clearly see the cut-o� frequencies in the �rst and third modes. Note that k3 has

a negative real component at low frequencies and it might therefore be thought that

this violates the radiation condition for waves propagation in the positive direction.

In our approach, the wavenumbers always have an imaginary component | even

predominantly real-only modes such as k2 have an imaginary component arising from

the damping. Thus the criterion is based on dissipation of energy in the positive

direction. A negative real component is expected to lead to a standing wave.

For the later examples, we will use an aluminum beam that is 25:4mm (1:0 in)

deep with a radius of curvature, R = 254mm (10:0 in). The spectrum relations

for this beam are plotted in Figure 1.3. Only the cut-o� frequency in the �rst mode
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appears in the frequency range of interest. In the low frequency region (0�500Hz), we
see some coupling e�ects due to the thickness of the beam. This coupling diminishes

as the radius of curvature increases.

In order to better understand what the spectrum relations are doing, it is worth

while to consider a set of approximate spectrum relations. The three roots of the

characteristic equation with relatively large R=h ratio can be approximated nicely

from the straight beam case as

k1 = �
s
k2P �

1

R2

k2 = �
vuut 1

2R2
+
1

2
(k2I + k2S) +

s
k4B +

1

4
(k2I � k2S)

2 +
1

4R4

k3 = �
vuut 1

2R2
+
1

2
(k2I + k2S)�

s
k4B +

1

4
(k2I � k2S)

2 +
1

4R4
(1.8)

where k1 is the longitudinal dominated mode and k2 and k3 are the 
exural dominated

modes. These approximations, also plotted in Figure 1.3, allow us to make a few

statements about the behavior of the coupling. In comparison to the uncoupled

modes, the major e�ect is in the longitudinally dominated mode. It can be seen that

the behavior is similar to a rod with elastic constraint [11], that is, it is imaginary-

only up to the cut-o� frequency and then becomes real-only. Thus the low frequency

components evanesce indicating a transfer of energy to the other modes. The 1=2R2

terms in k2 and k3 are acting like a compressive pre-stress on the beam [11]. This

has the e�ect that for the propagating 
exural mode the group speed is increased

indicating an e�ective increase in sti�ness. However, the coupling generally will not

cause drastic changes in the spectrums of the 
exural dominated modes. Indeed, if

h � R=100, it is clear from Figure 1.3 that the only di�erence is in the �rst mode.

Finally, notice how the spectra are almost identical to the uncoupled spectra at the

higher frequencies.

1.4 Point Excitation of a Curved Beam

As a prelude to considering curved beams of �nite length, we begin by looking at

the point excitation of an in�nite curved beam; physically this would mean that the

beam is in the form of a helix. We will use two types of force histories, one that is

relatively broad-banded in frequency and two that are relatively narrow-banded, in

order to demonstrate how the coupling of the modes changes with frequency. These

are shown, along with their normalized amplitude spectrums, in Figure 1.4.
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Our approach to the solution parallels the problems presented in References [6, 8,

11]; what makes this case interesting is that we now have three coupled modes. The

solution for the forward propagating terms is written as

û(s) = A�11e
�ik1s +B�12e

�ik2s +C�13e
�ik3s

v̂(s) = A�21e
�ik1s +B�22e

�ik2s +C�23e
�ik3s

�̂(s) = A�31e
�ik1s +B�32e

�ik2s +C�33e
�ik3s (1.9)

From the free body diagram of the excitation region of the in�nite beam it can be

shown that at the loading site s = 0,

u(0; t) = 0; �(0; t) = 0; V (0; t) = �1
2
P (t)

where we are considering a transverse force excitation. The �rst two of these allow

the solution to be written as

û(s) = A[�11e
�ik1s + ��12e

�ik2s + ��13e
�ik3s]

v̂(s) = A[�21e
�ik1s + ��22e

�ik2s + ��23e
�ik3s]

�̂(s) = A[�31e
�ik1s + ��32e

�ik2s + ��33e
�ik3s]

where the coe�cients � and � are given by

� = ��11�33 � �31�13

�12�33 � �32�13
; � = ��11�32 � �31�12

�13�32 � �33�12

We determine A from the shear relation

�1
2
P = V = GAK1

"
u

R
+
@v

@s
� �

#

After di�erentiation, this leads to

A =
�P̂

2GAK1[q1 + �q2 + �q3]
; qm =

1

R
�1m � ik1�2m � �3m

The solution is arranged so that if we set R = 1 then �12 = �13 = �21 = �31 = 0,

and the uncoupled straight beam solution is recovered. Care must be taken, however,

in order to approach the proper limit since both � and � approach in�nity. It turns

out that �=� = 1 in the limit and we get, for example,

�̂(s) =
�P̂

2EI(k22 � k33)
[e�ik2s � e�ik3s]

Note that the spectrum relations also change.
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The velocity reconstructions for the broad band input are shown in Figure 1.5.

There are two points of interest. First, note how the initial zero axial velocity even-

tually becomes signi�cant. Second, note the oscillatory behavior of the transverse

velocity. Although the force excitation lasts only about 200�s, the beam near s = 0

continues to oscillate in an almost resonant like fashion. Actually, a standing wave

has been established. The �gure also shows the separate contributions from each

mode for the response v(s = 3R; t). It is clear that the �rst mode is contributing the

ringing behavior.

This is more evident when we look at these velocity responses in the frequency

domain. It is clear in Figure 1.6 that there is a peak in the v-velocity response which

corresponds with the cut-o� frequency. Furthermore, this peak is coming entirely

from the �rst mode. The broadband excitation has identi�ed the cut-o� frequency in

the �rst mode.

A �nal point of interest for this example is the e�ect of the cut-o� frequency of

the longitudinal mode. Below this frequency there is only one propagating mode in

the beam, while above the frequency two propagating modes exist. To illustrate this

point, we excite the curved beam with the narrow banded force histories shown in

Figure 1.4. The pulses are chosen so that they just bracket the cut-o� frequency.

Figure 1.7 clearly shows the presence of the second propagating mode above the

cut-o� frequency. Note that the two propagating modes are present in both the

transverse and longitudinal responses but the amplitude ratios are di�erent. This

plot is emphasizing the nature of the solution of Equation (1.6) as a collection of

mode responses.

1.5 Spectral Element Formulation

As seen from the point excitation example of the last section, the formulation, al-

though relatively straight forward, requires a signi�cant amount of manipulation. A

similar approach for connected curved beams or even for a �nite curved beam would

be very cumbersome, hence we now develop a matrix formulation to facilitate these

manipulations.

Consider a segment of curved beam of length L. We begin by expressing the

displacements as

û(s) = A�11e
�ik1s +B�12e

�ik2s + � � �+E�15e
�ik2(L�s) + F�16e

�ik3(L�s)

v̂(s) = A�21e
�ik1s +B�22e

�ik2s + � � �+E�25e
�ik2(L�s) + F�26e

�ik3(L�s)

�̂(s) = A�31e
�ik1s +B�32e

�ik2s + � � �+E�35e
�ik2(L�s) + F�36e

�ik3(L�s)(1.10)
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The length is introduced to include re
ections coming from a boundary located at

s = L. This displacement solution can now be re-written as

fu(s); v(s); �(s)gT = fUg(s)
= f�g1Ae�ik1s + � � �+ f�g6Fe�ik3(L�s)

We will re-write this in an even more compact matrix form; so as to make the matrix

notation a little more accessible, we will take the developments of the rod as the

archetype and use its notation (except changed to matrices). The 1-D solution for a

rod [11] is represented as

û(x) = [e�ik1x]A+ [e�ik1(L�x)]B

where A and B are associated with the forward moving and backward moving waves,

respectively. The displacement for the curved beam is written as

fUg(s) = [�A]de(s)cfAg+ [�B ]de(L� s)cfBg

were [�A] or [�B ] are the [3� 3] partitions of [ � ] and

de(s)c �
2
64 e�ik1s

0
0

0
e�ik2s

0

0
0

e�ik3s

3
75 ; fAg �

8><
>:
A

B

C

9>=
>; ; fBg �

8><
>:
D

E

F

9>=
>;

It is the presence of the amplitude ratios that is the most signi�cant di�erence.

We wish to replace the vectors fAg and fBg in terms of the nodal displacements

at s = 0 and s = L. That is, we introduce

û(0) = û1 ; v̂(0) = v̂1 ; �̂(0) = �̂1 ; û(L) = û2 ; v̂(L) = v̂2 ; �̂(L) = �̂2

We write this in matrix notation as

fû1; v̂1; �̂1gT = fug1 = fug(s = 0) = [�A]de(0)cfAg � [�B ]de(L)cfBg
fû2; v̂2; �̂2gT = fug2 = fug(s = L) = [�A]de(L)cfAg � [�B ]de(0)cfBg

Let us write all six equations as

� fug1
fug2

�
= [ Q ]

� fAg
fBg

�

Solving for the coe�cients gives

� fAg
fBg

�
= [Q�1]

� fug1
fug2

�
= [ G ]

� fug1
fug2

�
=
�
[G11] [G12]
[G21] [G22]

� � fug1
fug2

�
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where each partition of [ G ] is of size [3� 3]. We are now in a position to write the

displacements in terms of the shape functions. They are

fUg(s) = [g(s)]1fug1 + [g(s)]2fug2 (1.11)

where the [3� 3] matrix of shape functions are de�ned as

[g(s)]1 = [�A]de(s)c[G11] + [�B ]de(L� s)c[G21]

[g(s)]2 = [�A]de(s)c[G12] + [�B ]de(L� s)c[G22] (1.12)

There are a total of 3� 3� 2 = 18 shape functions in all. While not obvious from the

above, it turns out that, even in this general case, the collection of shape functions

associated with the degrees of freedom at the second node are the mirror image of

the �rst set.

Figure 1.8 shows the g22(s) shape function of a 270o beam segment at a number

of frequencies. This shape function is associated with the v̂1 degree of freedom and

thus can be plotted as a radial displacement o� the original shape. It is similar to

conventional shape functions except that it is frequency dependent, typically com-

plex, and can represent the behavior of very large beam segments. The other shape

functions behave in a similar manner. It is clear from this �gure and from the above

developments, that once the nodal degrees of freedom are determined that the shape

functions can be used to compute the responses at any intermediate locations. This

is a crucial attribute since the beam segments or elements can be very long.

The next step in the element development is to derive a sti�ness relation for the

beam segment. The process is simply that of expressing the resultant forces and

moments from Equations (1.2) and (1.3) in terms of the displacement solutions given

in Equation (1.11). We can write resultants associated with the boundary conditions

in terms of the displacements in matrix form as

fFg(s) = fF; V; MgT (s) = [ @ ]fUg(s)
where [ @ ] is the matrix collection of di�erential operators of size [3 � 3]. After

substituting for fUg(s) in terms of the shape functions get

fFg(s) = [ @ ][g(s)]1fug1 + [ @ ][g(s)]2fug2
� [@g(s)]1fug1 + [@g(s)]2fug2 (1.13)

Relating the member resultants at s = 0 and s = L to the nodal loads at the same

locations leads to the sti�ness relation� fFg1
fFg2

�
=

"
[�@g(0)]1 [�@g(0)]2
[+@g(L)]1 [+@g(L)]2

# � fug1
fug2

�
(1.14)
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or simply

fF̂g = [k̂(!)]fûg ; fF̂g = fF̂1; V̂1; M̂1; F̂2; V̂2; M̂2gT ; fûg � fû1; v̂1; �̂1; û2; v̂2; �̂2gT

where [ k̂ ] is the [6 � 6] dynamic element sti�ness matrix. This sti�ness matrix is

frequency dependent, complex, and symmetric.

For illustrative purposes, Figure 1.9 shows the normalized k̂11, k̂22, and k̂33 diago-

nal terms for the same beam used to illustrate the shape functions. As is typical with

spectral elements, they exhibit a very large dynamic range. The normalizations are

with respect to the sti�nesses for straight thin beams [12]. That is, they are presented

as

k̂11=(EA=L) ; k̂22=(12EI=L
3) ; k̂33=(12EI=L)

Note that the k̂11 sti�ness is substantially less than the elementary rod values, and

it is only after the cut-o� frequency (� 3 kHz) does it become greater than unity.

This can be understood by considering the static (low-frequency) axial loading of the

beam �xed at one end | because of the curvature, the axial load creates a moment

and consequently, the beam has a great deal more 
exibility than the corresponding

straight case.

The sti�ness relation for the throw-o� or semi-in�nite element is simply

fFg1 = [�@g(0)]1fug1 = [k̂(!)]fug1 ; [g(s)]1 = [�A]de(s)c[G11] (1.15)

The sti�ness matrix in this case is a [3�3] frequency dependent, complex and symmet-

ric matrix. This can be used to recover the results presented for the point excitation

of an in�nite or semi-in�nite curved beam

1.6 Point Excitation of a Closed Ring

The advantage of the curved element is that it can be combined with other elements,

either 
at or curved to form signi�cantly more complex structures. References [6, 13]

discuss the programming structure required for multiply connected spectral elements.

However, we will not emphasize this aspect of their use, rather, we will perform the

example of the point excitation of a closed ring. The example demonstrates the basic

method of joining elements in addition to demonstrating the utility of the spectral

method.

We form the closed ring by combining two curved elements of the same material

properties each of which is a half-circle. Because of symmetry, we could model the

ring with a single half-circle element or as a single whole-circle element. In the latter
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case, half of the applied load must be placed at each node and the extra conditions

of u1 = 0; �1 = 0; u2 = 0; �2 = 0 be imposed. The two element model was chosen so

as to verify the assemblage process.

The elements can be joined at the common nodes by merely summing together

the appropriate dynamic sti�ness matrix components to form a global sti�ness matrix

[ K̂ ]. We must therefore �rst rotate each element sti�ness to this global system. The

transformation requires the use of a simple [6� 6] rotation matrix [ T ] that is of the

form

[ T ] =

"
[R(�)] 0

0 [R(� + 2�)]

#

where R(�) is the [3� 3] rotation matrix [12]. This takes into account that the ends

of the curved element are oriented di�erently to each other. In the plane case, if the

nodal coordinates are (x1; y1) and (x2; y2), then with 2p =
q
(x2 � x1)2 + (y2 � y1)2

and q =
p
R2 � p2, the angles are given by

� = tan�1
 
(x2 � x1)p� (y2 � y1)q

(x2 � x1)q + (y2 � y1)p

!
; � = tan�1

 
p

q

!

Since only two elements are present, we will assign the coordinate system of one to

be the global coordinate system and rotate the other.

The matrix [ T ] transforms the vectors of nodal displacements and nodal forces

to the global system as follows

fF̂g = [ T ]f �̂Fg ; fûg = [ T ]f �̂ug

where the barred quantities represent the local coordinate system. As a consequence,

the element sti�ness matrix in global coordinates can be written as

[ k̂ ] = [ T ]T [ �̂k ][ T ]

The global sti�ness matrix is then simply formed by adding the two global element

sti�ness matrices together.

With the elements connected, we can now determine the responses of the closed

ring due to a point excitation. The velocity reconstructions for three points, � =

0o; 90o; 180o, along the ring are shown in Figure 1.10. For comparison purposes, the

same ring was modeled using 64 straight Timoshenko spectral elements. The two sets

of results are indistinguishable.

Unlike the previous example of an in�nite curved beam, there are multiple re-


ections occurring. The waves are traveling around the ring and interacting with
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each other. From Figure 1.11, we can see that many resonance frequencies are being

established. These would be the frequencies of interest if a vibration experiment were

being performed. It is interesting to note that the v response at 90o is missing many

of the intermediate resonances, but these are present in the u response. Furthermore,

we see the e�ect of the �rst mode cut-o� frequency in the v responses but not in u.

This is consistent with Figure 1.6 for the in�nite beam.

As a �nal illustration of the results, we integrate the velocity responses for the

ring to determine how it is deforming over time. Figure 1.12 illustrates the exag-

gerated deformation (multiplication by 300) of the ring due to the point excitation.

It is interesting to note the rigid body motion that is occurring although it was not

speci�cally addressed in the solution. On the time scale shown, the problem reduces

simply to a transfer of momentum. The force transfers an impulse of about 0:31Ns

to the ring of mass 2:80 kg, thus the force should cause the ring to move at about

113mm=s. From the �gure, we can approximate the ring velocity as 103mm=s, the

di�erence being due to the damping present in the modeling.

The 
exibility of the spectral element approach has allowed us to view the prob-

lem of the impact of a ring as one of wave propagation, or vibration, or rigid body

dynamics. This comes about because of the convenience in alternating between the

time and frequency domains.

1.7 Discussion

A deep curved beam element was developed that extends the variety of problems the

spectral element method can handle. One of the challenges that arose during the

development was the problem of determining the spectrum relations. Even though

cubic solvers are well known, it is not always certain which branch should be chosen

after a branch point occurs. In the quadratic case, which occurs for straight beams,

the ambiguity is removed by adding damping. This becomes essential in the cubic

case so that the phase of each km(!) can be tracked correctly. The e�ect of the

damping is to separate each of the modes. With this separation, we can also reliably

identify the associated amplitude ratios.

The element developed possesses all of the features of the spectral element method

which make the method desirable for solving dynamic problems. Primary among these

are that the element can be very long and that the frequency domain formulation

allows the system response functions to be determined automatically. This latter

attribute, along with the fast Fourier transform, enables a duality between the time
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domain and frequency domain to be presented conveniently. Information not readily

seen in one is often detectable in the other. The example problems demonstrate these

features.

Appendix A: Computing the Spectrum Relations

The formulas used to solve the characteristic equation are based on References[14,

15]. By replacing k2 with z, the characteristic equation can be re-written as

z3 + a2z
2 + a1z + a0 = 0

where the coe�cients are insured of being complex by adding damping to the system.

Now compute the terms

q = (a22 � 3a1)=9 ; r = (2a32 � 9a2a1 + 27a0)=54

and

s1 = �[r +
q
r2 � q3]

1=3 ; s2 =
�q

[r +
p
r2 � q3]1=3

The three roots are then given by

z1 = (s1 + s2)� 1
3
a2

z2 = �1
2
(s1 + s2)� 1

3
a2 + i1

2
(s1 � s2)

p
3

z3 = �1
2
(s1 + s2)� 1

3
a2 � i1

2
(s1 � s2)

p
3

The six spectrum relations are given as �pz.
A di�culty arises in choosing the appropriate square or cube root since we wish

to compute single zj at a time. The issue is that while the nth root of a complex

number z is given by

z = a + ib = Aei� ; z
1=n = A

1=nei�=n

the phase � = tan�1(b=a) has an ambiguity of N�. We remove this ambiguity by

keeping track of the total phase. That is, starting with some value and with reference

to the unit circle in the complex plane, as the wavenumber goes from the 4th to the

1st quadrant the total phase is increased by 2�. Conversely, if the wavenumber goes

from the 1st to the 4th quadrant the total phase is decreased by 2�. The nth root is

then given by

z
1=n = A

1=nei(�+N�)=n

This scheme works quite robustly when the frequency increment is not too large.
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Figure 1.1: Coordinate system and resultant loads for a deep curved beam.
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Figure 1.2: Spectrum relations kh for a curved beam with R = 100mm and h =
100mm.
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Figure 1.4: Force histories and corresponding amplitude spectrums.
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Figure 1.5: Velocity reconstructions for the point excitation of an in�nite curved
beam.
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Figure 1.6: Frequency domain response for the point excitation of an in�nite curved
beam.
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Figure 1.7: Velocity responses due to narrow banded point excitations.
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Figure 1.8: Shape functions for a 270o curved beam element.
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Figure 1.9: Normalized sti�nesses k̂11, k̂22, and k̂33 for a 270o curved beam element.
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Figure 1.10: Velocity reconstructions for the point excitation of a closed ring.
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Figure 1.11: System response functions for the point excitation of a closed ring.
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➤

Figure 1.12: Deformed shapes (displacements scaled by 300) of a ring due to a point
excitation. Time intervals are every 750�s.



Chapter 2

Long Segmented Cylindrical Shells

The spectral element method for wave propagation in folded plate structures is ex-

tended to problems involving curved members. By combining these curved spectral

elements with previously presented 
at spectral elements, the dynamic response of

geometrically complex structures can be determined. Of particular interest here is

the coupling that occurs naturally between the in-plane and transverse degrees of

freedom and how it a�ects the element formulation. As an example of the utility of

this element, the point excitation of an in�nite curved shell and a closed cylinder is

demonstrated.

2.1 Introduction

There is considerable intrinsic interest in waves in curved plate members because of

their use in such structures as arches, containment vessels, aircraft fuselages, and ship

hulls. Some idea of the range of applications is described by Gould [16] and thorough

treatments of their formulation are given by Leissa [17] and Markus [18].

A frequency domain matrix methodology for analyzing wave propagation in com-

plex folded plate structures was developed in References [19, 20, 21, 22]. This chapter

is a continuation of those researches but now extended to include curved segmented

shells. At present, we consider only circular uniform cylinders but the segments can

be of arbitrary length in the hoop direction. (In this way it is di�erent from the �nite

strip method described by Hinton et al [23].) Two spectral elements are derived: a

single noded semi-in�nite throw-o� element, and a �nite length two-noded element.

Both of these elements exactly model the distribution of mass and thus can be of any

length.

A 
at plate element has eight degrees of freedom [22] and the assembled [8 � 8]

sti�ness is achieved as a combination of two [4� 4] elements plus a rotation matrix.

29
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But the curved element has all eight degrees of freedom coupled and hence we must

tackle the sti�ness matrix directly as an [8 � 8] system. This is too cumbersome to

do explicitly; consequently, we lay out a computer based method for establishing the

shape functions and subsequently, the sti�ness matrix. This adds to the computa-

tional burden, but as compensation we get an approach that is conceptually simpler

and helps to unify the special results established in the earlier references.

An interesting aspect of shells is the coupling that occurs between the in-plane

and 
exural degrees of freedom. Unlike folded plate modeling where the coupling

between the degrees of freedom occurs only at attachment nodes, the curved shell

segment possesses coupling at the level of the di�erential equations of motion. This

results in a spectrum relation that is relatively complicated. Therefore a portion of

this chapter is devoted to discussing the spectrum relation in some detail.

While curved shell segments can be combined with 
at elements to form geomet-

rically complex structures, we will not emphasize that aspect of their use. Rather,

we wish to focus speci�cally on some of the wave propagation aspects. We look at

two variations of a closed cylinder problem. The �rst is used to verify the accuracy

of the formulation while the second explores the nature of the wave re
ections in the

hoop direction.

2.2 Spectral Analysis of a Cylindrical Shells

There are a variety of statements of the governing equations for shells; to be consistent

with Reference [22], we brie
y summarize the derivation. To this end, we �nd it most

expedient to �rst specify the deformation, obtain the strain and kinetic energies, and

then use Hamilton's principle to derive the equations of motion and the appropriate

boundary conditions.

Consider the segment of cylindrical shell shown in Figure 2.1. The shell has a

radius R, thickness h, and is considered long in the y-direction. The 3-D deformation

is approximated as

�u(s; y; z) � u(s; y)� z

 
@w

@s
+
u

R

!

�v(s; y; z) � v(s; y)� z
@w

@y
(2.1)

�w(s; y; z) � w(s; y)

where u(s; y) is the mean mid-plane circumferential displacement, v(s; y) is the length-

wise displacement, and w(s; y) is the radial displacement. This deformation leads to
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the non-zero strains

�ss = �w
R
+
@u

@s
� z

 
@2w

@s2
+

1

R

@u

@s

!

�yy =
@v

@y
� z

@2w

@y2
(2.2)

2�sy =
@v

@s
+
@u

@y
� z

 
2
@2w

@s@y
+

1

R

@u

@y

!

Other shell theories have slightly di�erent expressions for these strains; the present

theory is closest to that of Reissner [24] and Naghdi [25]. Excellent surveys of the

di�erent theories are given in References . The theory developed here is the shell

equivalent of the classical plate theory and the Bernoulli-Euler beam theory.

An application of Hamilton's principle [12] leads to the three governing equations

of motion (for R = constant)
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where � is Poisson's ratio, D � Eh3=12(1 � �2), and �E � Eh=(1 � �2). We have

added some viscous damping through the � terms.

Let the virtual work of the applied loads be

�V = �Qu�u�Qv�v �Qw�w �Q � ;  � @w

@s

then Hamilton's principle also gives the associated boundary conditions on the side

s = constant as:
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We can form the resultants per unit length as

Nss �
Z
�ss dz ; Nsy �

Z
�sy dz ; Mss � �

Z
�ssz dz ; Msy � �

Z
�syz dz

where the integrations are over the cross-section. After substituting for the stresses

and strains in terms of our approximations, we get that the natural boundary condi-

tions are equivalent to specifying

Qu = Nss +
1

R
Mss

Qv = Nsy

Qw = �@Mss

@s
� 2

@Msy

@y
= Vsz

Q = Mss (2.5)

The �rst of these resembles the resultant load expression used for curve beams [26]

while the third resembles the Kirchho� shear stress relation [11].

Spectral analysis assumes solutions of the form

u(s; y; t) =
NX
n=1

MX
m=0

~u(s; !n; �m) e
�i�myei!nt ; �m =

2�m

W
!n =

2� n

T
(2.6)

where W and T are the space and time windows, respectively. The use of these

representation is documented in Reference [27]. In this chapter, we limit ourselves to

problems that are symmetric about y = 0 and use cos(�my) with u and w, and use

sin(�my) with v. When these are substituted into the governing di�erential equations,

we get a set of ordinary di�erential equations with constant coe�cients. These have

solutions of the form

~u(s; !; �) = uoe
�iks ; ~v(s; !; �) = voe

�iks ; ~w(s; !; �) = woe
�iks

where k = k(!; �) is the wavenumber. In this representation, the amplitudes uo, vo,

wo, and the wavenumber are as yet undetermined. On substitution, these lead to the

homogeneous system of equations

2
64 �1 � [k2 + (1� �)�2]D=R2 �
 [ �E + (k2 + �2)D]ik=R

 �2 � �E�=R
[ �E + (k2 + �2)D]ik=R �� �E�=R �3 + �E=R2

3
75
8><
>:
uo
vo
wo

9>=
>;=0 (2.7)

using

�1 � � �E[k2 + 1
2
(1� �)�2] + �h�!2 ; 
 � 1

2
(1 + �) �Eik�

�2 � � �E[�2 + 1
2
(1� �)k2] + �h�!2 ; �3 � D[k2 + �2]2 � �h�!2
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and �!2 � !2 � i!�=�. The �1, �2 and 
 terms alone de�ne the 
at membrane

problem, while �3 alone de�nes the 
at plate 
exural problem. All the other terms

are couplings. For a non-trivial solution, the determinant must be zero and this allows

k to be determined. This has eight solutions in all, but since only k2 terms appear,

there are four basic modes appearing as �kj pairs.
For each wavenumber kj, Equation (2.7) gives the relation among the amplitudes.

This is homogeneous and therefore, at best, we can only get amplitude ratios. For

example, we can solve for the remaining two terms as a function of uo. In anticipation

of a later need, we add  o = �ikwo and write the solutions at a particular wavenumber
kj as 8>>><

>>>:
uo
vo
wo
 o

9>>>=
>>>;
j

=

8>>><
>>>:

1
�v
�w
� 

9>>>=
>>>;
j

uo = f�gjuo

where the symbol � indicates an amplitude ratio. Although the vector f�g shown is

normalized with respect to uo, it is possible for other modal vectors to be normalized

di�erently. This must be done for each mode kj and hence there are eight vectors.

We choose to represent these as [ � ] = [[�A]; [�B ]] where

[�A] �

2
6664
8>>><
>>>:

1
�v
�w
� 

9>>>=
>>>;

1

8>>><
>>>:

�u
1
�w
� 

9>>>=
>>>;
2

8>>><
>>>:

�u
�v
1
� 

9>>>=
>>>;

3

8>>><
>>>:

�u
�v
1
� 

9>>>=
>>>;

4

3
7775

and [�B ] is the same but evaluated at the wavenumbers �kj. That is, the [4 � 4]

partitions [�A] and [�B ] are evaluated at +kj and �kj, respectively; they are fully

populated and typically are not symmetric. The normalizations are arranged so that

the uncoupled 
at plate solutions are easily recovered.

For each mode, the corresponding amplitude uoj is undetermined; to make the

notation resemble what we have already used, we will label each of the theseA; B; � � �.
The solution for the displacements can then be expressed as

~u(s) = A�11e
�ik1s +B�12e

�ik2s + � � �+G�17e
+ik3s +H�18e

+ik4s (2.8)

with similar expressions for ~v, ~w, and ~ , but involving the amplitude ratios �2j, �3j,

and �3j, respectively. The coe�cients A;B; � � � ;H are to be determined from the

boundary conditions.

It is apparent that the spectrum relation k(!; �) plays a central role in the solution,

and since the characteristic equation is rather complicated, we look at its solution in

greater detail next.
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2.3 Discussion of the Spectrum Relations

The characteristic equation to determine the wavenumber k(!; �) is formed by setting

the determinant of system (2.7) to zero. On expansion, we �nd the characteristic

equation can be rearranged as

k8 + A3k
6 + A2k

4 + A1k
2 + A0 = 0 (2.9)

The expressions for the coe�cients An are too complicated to be listed here. This

has eight solutions in all, but since only k2 terms appear, there are four basic modes

appearing as �kj: two associated with the in-plane behavior and two associated with

the 
exural behavior. In general, of course, the modes are coupled and it is not proper

to speak of a membrane mode or a 
exural mode.

We must solve a quartic equation in order to get the full behavior of the spectrum

relations. While the formulas for doing this are relatively straight-forward, they cause

some di�culties which are worth discussing.

Following Reference [14], we �rst write the characteristic equation as the conjugate

factorization for z = k2h
z2 + (a+ b)z + (c+ d)

i h
z2 + (a� b)z + (c� d)

i
= 0

This allows z to be determined from a sequence of quadratic equations. The coe�-

cients appearing in the above are

a = 1
2
A3 ; b = 1

2

q
8c+ A2

3 � 4A2 ; d =
q
c2 � A0

and c is chosen as a solution of the cubic equation

c3 � 1
2
[A2]c

2 + 1
4
[A1A3 � 4A0]c+

1
8
[A0A

2
3 + A2

1 � 4A0A2] = 0

The formulas to solve the cubic equation are based on those of References . We �rst

write the equation as

c3 + a2c
2 + a1c+ a0 = 0

and then compute the terms

q = (a22 � 3a1)=9 ; r = (2a32 � 9a2a1 + 27a0)=54 ; s1;2 = �[r �
q
r2 � q3]

1=3

The three roots for c are then given by

c1 = (s1 + s2)� 1
3
a2

c2 = �1
2
(s1 + s2)� 1

3
a2 + i1

2
(s1 � s2)

p
3

c3 = �1
2
(s1 + s2)� 1

3
a2 � i1

2
(s1 � s2)

p
3
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The eight spectrum relations are given as �pz.
These equations can be easily programmed. The di�culty that arises is in choosing

the appropriate square or cube root in both the cubic and quadratic solvers, as well

as the appropriate root from the cubic solver. It is seen that while there are only four

z roots, the formulas give a multiplicity of 144 roots. This is especially acute since

we wish to compute a single zj at a time. The issue is that in computing the nth root

of a complex number z = a + ib = Aei�, the phase � = tan�1(b=a) has an ambiguity

of N�.

We remove this ambiguity by keeping track of the total phase. That is, starting

with some value and with reference to the unit circle in the complex plane, as the

wavenumber goes from the 4th to the 1st quadrant the total phase is increased by 2�.

Algorithmically, we compute complete modes separately at eachm. Starting at a large

value of frequency, we work toward the lower frequencies, keeping track of the phases.

The root c is chosen as the one that had the largest real value initially. Approximate

spectrum relations are useful here in identifying the appropriate modes. This scheme

works quite robustly when the frequency decrement is not too large. Periodic checks

with an iterative root �nder helps con�rm the correctness of the roots. It must be

said that determining the spectrum relations is now a signi�cant operation in itself,

and unlike the previous reported cases, they are no-longer computed on-the-
y as

part of the structural analysis.

An idea of the variety of behaviors is shown in Figure 2.2 for a value of � = 2�m=W

with m = 40. In this and the remaining examples, we consider an aluminum shell

that is 25:4mm (1:0 in) thick with a radius of curvature, R = 254mm (10:0 in). Also,

we take W = 20m (800 in). Using these values, the curvature has a signi�cant e�ect

on the spectrum relations. The �gure shows for the �rst four spectrum relations;

these correspond to propagating waves, and are characterized by a negative imaginary

component.

Not surprising, there are many branch points in the spectrum relations. We clearly

see three cut-o� frequencies but what is interesting is that two of them are associated

with k2, the in-plane shear dominated mode. Note that both k2 and k4 have a

negative real component at low frequencies and it might therefore be thought that

this violates the radiation condition for waves propagation in the positive direction.

In our approach, the wavenumbers always have an imaginary component | even

predominantly real-only modes such as k3 have an imaginary component arising from

the damping. Thus the identi�cation criterion is based on dissipation of energy in

the positive direction. A negative real component is expected to lead to a standing
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wave.

It is di�cult to get a clear idea of the complete (i.e., asm varies) spectrum relations

from Figure 2.2, it is useful, therefore, to introduce an approximation that will help

to delineate the separate contributions. An approximation that is reasonable for thin

shells of large radius is given by

k21 = k2P �
1

R2
� �2 k23 =

1

2R2
� �2 +

s
k4B +

1

4R4
� �2

R2

k22 = k2S � �2 k24 =
3

2R2
� �2 �

s
k4B +

9

4R4
� �2

R2

(2.10)

where k2P � !2�(1� �2)=E, k2S � !2�2(1 + �)=E, and k4B � !2�h=D. The �rst

two are the membrane dominated modes and recover the plots shown in Rizzi and

Doyle (1992) when R is very large. The third and fourth modes are the 
exural

dominated modes and for large R they recover the 
at plate spectrum relations given

by Doyle (1997). In comparison to the uncoupled modes, the major e�ect of the

curvature is in the longitudinally dominated modes because the cut-o� frequencies

are a�ected and hence delay the formation of real-only wavenumbers.

Since the spectrum relations are relatively insensitive to R at large frequency,

Then these approximations are quite useful in identifying the modes as determined

by the root solver.

2.4 Spectral Element Formulation

When the number of degrees of freedom is large, we need an organized way to handle

establishing the shape functions and the element sti�ness. The cylindrically curved

shell segment is such a case and we take this opportunity to develop an appropriate

matrix scheme.

Consider a segment of shell of length L in the hoop direction. We begin by

expressing the displacements as

~u(s) = A�11e
�ik1s +B�12e

�ik2s + � � �+G�17e
�ik3(L�s) +H�18e

�ik4(L�s) (2.11)

with similar expressions for ~v, ~w, and ~ . The length is introduced to include re
ections

coming from a boundary located at s = L. This displacement solution can be re-

written as

f~u(s); ~v(s); ~w(s); ~ (s)gT = fUg(s)
= f�g1Ae�ik1s + � � �+ f�g8He�ik4(L�s)
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We will re-write this in an even more compact matrix form; so as to make the matrix

notation more accessible, we will take the developments of the rod as the archetype

and use its notation (except changed to matrices). The 1-D solution for a rod [11] is

represented as

û(x) = [e�ik1x]A+ [e�ik1(L�x)]B

where A and B are associated with the forward moving and backward moving waves,

respectively. The displacement for the shell segment is written as

fUg(s) = [�A]de(s)cfAg+ [�B ]de(L� s)cfBg

were [�A] or [�B ] are the [4� 4] partitions of [ � ] and

de(s)c �

2
6664
e�ik1s

0
0
0

0
e�ik2s

0
0

0
0

e�ik3s

0

0
0
0

e�ik4s

3
7775 ; fAg �

8>>><
>>>:
A

B

C

D

9>>>=
>>>; ; fBg �

8>>><
>>>:
E

F

G

H

9>>>=
>>>;

We wish to replace the vectors fAg and fBg in terms of the nodal displacements at

s = 0 and s = L. That is, we introduce

~u(0) = ~u1 ; ~v(0) = ~v1 ; ~w(0) = ~w1 ; ~ (0) = ~ 1

with similar, but subscripted `2', terms at s = L. We write this in matrix notation as

f~u1; ~v1; ~w1; ~ 1gT = f~ug1 = fUg(s = 0) = [�A]de(0)cfAg � [�B ]de(L)cfBg
f~u2; ~v2; ~w1; ~ 2gT = f~ug2 = fUg(s = L) = [�A]de(L)cfAg � [�B ]de(0)cfBg

Solving for the coe�cients gives

� fAg
fBg

�
= [ G ]

� f~ug1
f~ug2

�
=
�
[G11] [G12]
[G21] [G22]

� � f~ug1
f~ug2

�

where each partition of [ G ] is of size [4� 4]. We are now in a position to write the

displacements in terms of the shape functions. They are

fUg(s) = [g(s)]1f~ug1 + [g(s)]2f~ug2 (2.12)

where the [4� 4] matrix of shape functions are de�ned as

[g(s)]1 = [�A]de(s)c[G11] + [�B ]de(L� s)c[G21]

[g(s)]2 = [�A]de(s)c[G12] + [�B ]de(L� s)c[G22] (2.13)
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There are a total of 4 � 4 � 2 = 32 shape functions. While not obvious from the

above, it turns out that, even in this general case, the collection of shape functions

associated with the degrees of freedom at the second node are the mirror image of

those associated with the degrees of freedom at the �rst node. The results for the

throw-o� element are simply are simply those associated with [G11]. These formulas

can be used to recover all the shape functions already derived in the cited references.

By way of example, Figure 2.3 shows the g33(s) cos(�my) shape function of a 270o

shell segment; this shape function is associated with the ~w1 degree of freedom and

thus can be plotted as a radial displacement o� the original shape. These shape

functions are similar in concept to conventional �nite element shape functions except

that they are frequency and wavenumber dependent, are typically complex, and can

represent the behavior of very large segments. The other shape functions behave

in a similar manner. It is clear from this �gure and from the above developments,

that once the nodal degrees of freedom are determined then the shape functions can

be used to compute the responses at any intermediate locations. This is a crucial

attribute since the segments can be very large.

The next step in the element development is to derive a sti�ness relation for

the shell segment. The process is simply that of expressing the resultant forces and

moments from Equation (2.5) in terms of the displacement solutions given in Equa-

tion (2.12). We write these resultants in matrix form as

fFg(s) = fNss +
1

R
Mss; Nsy; Vsz; MssgT (s) = [ @ ]fUg(s)

where [ @ ] is the matrix collection of di�erential operators of size [4 � 4]. After

substituting for fUg(s) in terms of the shape functions get

fFg(s) = [ @ ][g(s)]1f~ug1 + [ @ ][g(s)]2f~ug2
� [@g(s)]1f~ug1 + [@g(s)]2f~ug2 (2.14)

Relating the member resultants at s = 0 and s = L to the nodal loads at the same

locations leads to the sti�ness relation8<
: f

~Fg1
f ~Fg2

9=
; =

"
[�@g(0)]1 [�@g(0)]2
[+@g(L)]1 [+@g(L)]2

# � f~ug1
f~ug2

�
(2.15)

or simply f ~Fg = [~k(!; �)]f~ug where

f ~Fg = f ~N1; ~Fy1;
~V1; ~M1; ~N2; ~Fy2;

~V2; ~M2gT ; f~ug � f~u1; ~v1; ~w1; ~ 1; ~u2; ~v2; ~w2; ~ 2gT
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and [ ~k ] is the [8� 8] dynamic element sti�ness matrix. This sti�ness matrix is fre-

quency and wavenumber dependent, complex, and symmetric. The sti�ness relation

for the throw-o� or one-noded element is simply

f ~Fg1 = [�@g(0)]1f~ug1 = [~k(!; �)]f~ug1 (2.16)

The sti�ness matrix in this case is of size [4�4]. These sti�ness relations can be used

to recover the results already presented in the cited references.

For illustrative purposes, Figure 2.4 shows the normalized ~k11, ~k22, ~k33, and ~k44

diagonal terms for the same shell used to illustrate the shape functions. As is typical

with spectral elements, they exhibit a very large dynamic range. The normalizations

are with respect to the sti�nesses for straight thin beams [12] but modi�ed for plates.

That is, they are presented as

~k11=(Eh=L) ; ~k22=(Gh=L) ; ~k33=(12D=L
3) ; ~k44=(4D=L)

Note that the ~k11 sti�ness is substantially less than the static values, and it is only

after the cut-o� frequency (� 3 kHz for m = 0) does it become greater than unity.

On the other hand, ~k33 is always signi�cantly larger than the static straight value;

this is because the L3 in the denominator predicts an inordinately small static value.

2.5 Point Excitation of a Shell

The advantage of the curved element is that it can be combined with other elements |

either 
at or curved | to form signi�cantly more complex structures. References [28,

21] discuss aspects of the computer programming structure required for multiply

connected spectral elements; they also show how the spectral element method can be

hosted on a massively parallel machine. The variety of possibilities is too great to

pursue here, so we will be content with two short examples. Both involve the point

excitation of a complete cylindrical shell but the latter shifts the boundaries so as to

explore the nature of the re
ections.

We form the complete cylinder by combining two curved elements of the same

material properties each of which is a half-circle. Because of symmetry, we could

model the shell with a single half-circle element or as a single whole-circle element.

In the latter case, half of the applied load must be placed at each node and the extra

conditions of ~u1 = 0; ~ 1 = 0; ~u2 = 0; ~ 2 = 0 be imposed. The two element model

was chosen so as to verify the assemblage process.
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The elements can be joined at the common nodes by merely summing together

the appropriate dynamic sti�ness matrix components to form a global sti�ness matrix

[ K̂ ]. We must therefore �rst rotate each element sti�ness to this global system. This

must take into account that the ends of the curved element are oriented di�erently

to each other and an appropriate scheme is illustrated in Reference [26]. The global

sti�ness matrix is then simply formed by adding the two global element sti�ness

matrices together.

With the elements connected, we can now determine the responses due to a point

excitation. The input force history used is the same as used by in Reference [22]: it is

a pulse of duration of about 120�s, and has a frequency content of about 16 kHz. The

velocity reconstructions for three points, � = 0o; 90o; 180o, along the circumference

are shown in Figure 2.5. For comparison purposes, the same shell was modeled using

64 
at spectral elements. The two sets of results are indistinguishable even though

there are very many re
ections. It is worth pointing out that when fewer 
at elements

were used the results deteriorated as the time increased. This shows the signi�cant

computational savings in using the curved element.

There are obvious multiple re
ections occurring. The waves travel around the

circumference and interact with each other. We can get an alternative insight by

looking at the system response function Ĝ where û = ĜP̂ and P̂ is the input load.

Note that this facility is an integral attribute of the spectral element formulation.

From Figure 2.6, we can see that many resonance frequencies are being established.

These would be the frequencies of interest if an impulse/modal analysis experiment

vibration experiment were being performed. It is interesting to note that the w

response at 0o and 180o exhibit similar resonant behavior, but the response at 90o is

missing many of the intermediate resonances. A signi�cant peak appears at about

3:3 kHz; we now look further at this.

We wish to explore the e�ect of the re
ections on the formation of the spectral

peaks. To do this, we will model the cylinder as a sequence of increasing elements but

of the same radius | the cylinders can be viewed as forming helical coils. The net

e�ect is to place Node 2 further and further away from Node 1. The �nal model is

a single throw-o� element. We use the same broad band excitation and the velocity

reconstructions are shown in Figure 2.7. There are two points of interest. First,

note how all traces have the same initial behavior | this is the duration before any

re
ections return. The 180o element shows the most re
ections and these diminish

with increasing element size. The second point of note the trailing oscillatory behavior

even for the in�nite element. Although the force excitation lasts less than 200�s, the
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plate continues to oscillate in an almost resonant like fashion. Actually, a standing

wave has been established.

A di�erent view of these behaviors is obtained by looking at the velocity responses

in the frequency domain. It is clear in Figure 2.8 that there is the formation of

an increasing number of spectral peaks as the element length is increased. This is

expected but what is interesting is a peak in the w-velocity response in the in�nite

length case. An analysis of the amplitude ratios shows that this peak is coming

entirely from the �rst mode even though the response overall is dominated by the

�rst mode. What is happening is that the curvature acts e�ectively as a continuous

boundary and sets up a standing wave.

The 
exibility of the spectral element approach has allowed us to view the problem

of the impact of a cylinder as one of wave propagation or vibration. This comes about

because of the convenience in alternating between the time and frequency domains.

2.6 Discussion

A spectral shell element was developed that extends the variety of problems the

spectral element method can handle. It was shown to be accurate and certainly

more computationally e�cient than using multiple 
at plate elements. The element

developed possesses all of the features of the spectral element method which make the

method desirable for solving dynamic problems. Primary among these are that the

element can be very long and that the frequency domain formulation allows the system

response functions to be determined automatically. This latter attribute, along with

the fast Fourier transform, enables a duality between the time domain and frequency

domain to be presented conveniently. Information not readily seen in one is often

detectable in the other. The example problems demonstrate these features.

One of the challenges that arose during the development was the problem of

determining the spectrum relations. Even though formulas for the solution of quartic

equations were derived, it is not always certain which branch should be chosen after a

branch point occurs. In the quadratic case, which occurs for 
at plates, the ambiguity

is removed by adding damping. This becomes essential in the general case so that

the phase of each kj(!; �) can be tracked correctly | the e�ect of the damping is to

separate each of the modes. The damping is also necessary in order to distinguish

between the forward and backward moving waves.

Based on the problems we have considered, it is clear that once there is more than

one connection in a structure, it is essential to have a matrix methodology to handle
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the many unknowns. The spectral element approach presents itself as a well founded

matrix method that embodies a number of e�ciencies we have long associated with

the conventional �nite element method. For the range of problems they are suited

for, they show great e�ciencies and conveniences. Being formulated in the frequency

domain means it is also ideally suited for energy 
ow analysis of the type described by

Langley [29]. It is also appropriately formulated for tackling the solid/
uid interaction

problems as occur in structural acoustics. A beginning in this direction is described

in Reference [26].

The approach as presented so far has di�culty with localized discontinuities of

properties or geometry unless the have a very simple geometry. At present, there

is also the restriction that lateral boundaries must be relatively far away. Similarly,

there is a restriction that the material properties and geometry in the lateral direction

be uniform. It is hoped to tackle these issues in the future.



43

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqq
qqqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqqq
qqqqqqqqqq
qqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqq
qqqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqq
qqqqqqqq
qqqqqqqq
qqqqqqqq
qqqqqqqq
qqqqqqqq
qqqqqqqqq
qqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqq
qqqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqqq
qqqqqqqqqq
qqqqqqqqqqq
qqqqqqqqq

HH
HH

HH
HH

HH
HH

HH

HH
HH

HH
HH

HH
HH

HH

��

��

HH
HH

HH
HH

HH
HH

HH

HH
HH

HH
HH

HH
HH

HH

�
�

m1

m1

m2

m2

h

W

HH
HH

HH
HH

HH
HH

HHYHHHHHHHHHHHHHHj

s; u

y; v

z; w

@
@

@
@@I

HH
HHHY

�
�

��	

@
@
@
@
@
@@R

R

Figure 2.1: Coordinate system and displacements for a segment of cylindrical shell.
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Figure 2.2: Spectrum relations kjh for a shell segment with R = 254mm and h =
25:4mm, and m = 40.
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Figure 2.3: Samples of shape functions for a 270o shell segment.
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Figure 2.4: Normalized sti�nesses k̂11, k̂22, k̂33, and k̂44 for a 270
o shell segment.
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Figure 2.5: Velocity reconstructions for the point excitation of a closed cylinder.
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Figure 2.6: System response functions for the point excitation of a closed cylinder.
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Figure 2.7: Velocity reconstructions at y = 2R for the point excitation of shells of
di�erent circumference.
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Figure 2.8: Frequency domain response at y = 2R for the point excitation of shells
of di�erent circumference.



Chapter 3

Acoustic Radiation from Plate

Structures

Spectral elements, which incorporate the e�ect of 
uid loading on the structure, are

developed for analyzing acoustic radiation from dynamically loaded extended plates.

These elements may be conveniently joined to form complex thin-walled structures

composed of many segments.

3.1 Introduction

There are many practical situations where the interaction between the dynamics of a

structure and a surrounding 
uid is of great importance. The most obvious is noise;

noise is the propagation of acoustic energy through the 
uid. The interaction can also

in
uence the response of the structure itself; examples include dams, chimney stacks,

ships, fuselages, propellers, and transmission cables. Fluid loading problems are very

hard to solve exactly, and for geometries and con�gurations of practical interest it

is essential to be able to make useful simplifying approximations [30]. The purpose

of this chapter is to introduce a method being developed for analyzing folded plate

structures immersed in a 
uid.

A schematic of the cross-section of the folded plate structures of interest is shown

in Figure 3.1a; the plates extend in the y-direction. Such a structure when immersed

in a 
uid can experience three types of loading. The �rst is the structure-borne

excitation caused by the propagating structural waves. The second is a pressure

loading arising from some source within the 
uid; this acts as a distributed external

loading on the structure. The third load is the `self-loading' or 
uid loading caused

by the moving structure interacting with the 
uid. This also acts as a distributed

pressure loading but, since the magnitude depends on the motion of the structure, it

51
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has the e�ect of coupling the structure and 
uid motions. Additionally, these enclosed

structures are viewed as having two distinct regions; an interior region and an exterior

region. The interior region has loadings due to both the 
uid and the radiation from

the vibration of other plates, whereas, the exterior region only experiences loadings

from the 
uid. In this chapter, we restrict the 
uid to be only on the exterior of the

structure so that we can concentrate on the structural dynamics, 
uid loading, and

radiation into the 
uid. The reverberation problem for enclosed spaces is not treated

here.

Our analysis of the structural dynamics is based on the spectral element method

(References [6, 8, 11] give summaries of the approach as applied to frame structures)

but applied to structures of extended areas. This application to thin-walled structures

begins by combining the spectral analysis for in-plane wave responses [19] and out-

of-plane 
exural behavior [27] to form a matrix method approach for folded plate

structures [22]. The variety of structural shapes encompassed was recently enhanced

by adding a segmented curved shell element as detailed in Chapter 2.

The solid/
uid interaction problem is very intricate [31, 32, 33]; many of the �ner

points are covered in the excellent summary paper by Crighton [34]. The essential

di�culty is that the two media are coupled in a convolution sense | this is unlike a

plate on an elastic foundation, say. We tackle the interaction problem by incorporat-

ing the e�ect of 
uid loading on the structure directly into the element formulation.

In this way, the structural formulation for in vacuum dynamic response is una�ected.

Our approach is approximate but is shown to be reasonably accurate for medium


uid loading. Radiation from these extended plates is handled very conveniently

by utilizing the shape functions associated with the spectral elements. In fact, this

computation of the pressure response in the 
uid is performed as a post-processing

operation. The challenge we have here is to match the motion of the �nite plate

to that of the 
uid. But the domain for the 
uid is (at least) the half space above

the plate and is considerably larger than the length of the plate itself. Therefore, to

match the plate and 
uid boundaries, we must extend the plate boundary. We do

this by assuming the displacements can be matched by imposing w = 0 outside of

the �nite plate. We further assume that this can always be done even if the plate is

not physically ba�ed but is attached to other plate segments. The idea is illustrated

in Figure 3.1b.

Our interest in this chapter is on aspects of the structure/
uid interaction, there-

fore for simplicity, we take the plates and loading as being uniform in the y-direction.

We also have in mind aeronautical structures as typi�ed by aluminum in air | this
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corresponds to a relatively light 
uid loading situation as compared to naval applica-

tions.

3.2 Plate/Fluid Interaction: In�nite Plate

As a prelude to considering �nite plates, we �rst look at the response of an in�nite

plate with 
uid loading on one side. This will allow us to establish the context of the

approximations to be made in the next section. The plate lies in the x� y plane, but
for simplicity we take the plates and loading as being uniform in the y-direction.

The governing equations for the de
ection w(x; t) of a thin plate and the resulting

pressure p(x; t), when a mechanical loading q(x; t) is applied, are

D
@4w

@x4
+ �h

@w

@t
+ �h

@2w

@t2
= q(x; t)� p(x; z = 0; t) ; Br2p = �a

@2p

@t2
(3.1)

where h is the plate thickness, D the plate sti�ness, � the plate mass density, B the


uid bulk modulus, and �a the 
uid mass density. We have also added some damping

to the structure through �. The interface conditions between the plate and 
uid are

wplate(x) = wfluid(x; z = 0) ;
@p(x; z = 0)

@z
= ��a @

2w(x; z = 0)

@t2
(3.2)

Our solution technique uses spectral analysis; this assumes solutions of the form

w(x; t) =
NX
n

ŵ(x; !n)e
i!nt ; p(x; z; t) =

NX
n

p̂(x; z; !n)e
i!nt ; !n � n2�

T
(3.3)

where T is the time window for the discrete transform. Typically, N ranges as

512 � 4096. When these are substituted into the governing di�erential equations,

we get

D
d4ŵ(x)

dx4
� �h�!2ŵ(x) = q̂(x)� p̂(x; z = 0) ; Br2p̂+ �a!

2p̂ = 0 (3.4)

where �!2 = !2 � i!�=� and the interface relations become

ŵplate(x) = ŵfluid(x; z = 0) ;
@p̂(x; z = 0)

@z
= !2�aŵ(x) (3.5)

This set of equations will be our primary equations governing the dynamic response

of the plate and 
uid.

Consider a single in�nite sheet with 
uid only on one side and with a line loading

along x = 0. Let the plate de
ection and loading be represented in the form

ŵ(x) =
MX
m

~wme
�i�mx ; q̂(x) =

MX
m

~qme
�i�mx ; �m � m2�

W
(3.6)
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where W is the space window for the discrete transform. Typically, M ranges as

500 � 2000. The pressure has a similar representation, except that we must realize

it is two-dimensional

p̂(x; z) =
MX
m

~pme
�i�mxe�ikzz ; kz �

q
k2a � �2m (3.7)

This corresponds to pressure waves radiating from the plate surface in the positive

z-direction. The pressure boundary condition at z = 0 is now

�ikz ~pm = �a!
2 ~wm

Substituting these into Equation (3.4) gives the displacement of the plate and the

pressure in the 
uid as, respectively,

ŵ(x) =
X
m

~qme
�i�mx

[D�4m � �h!2 + i!�h� �a!
2

ikz
]

p̂(x; z) =
X
m

~qme
�i�mx

[D�4m � �h!2 + i!�h� �a!
2

ikz
]
�ikz
�a!2

(3.8)

As with the case of a plate in a vacuum, ~qm is chosen to be 1:0 to represent a line

load at x = 0.

Figure 3.2a shows the resulting pressures 100mm from a 2:5mm thick aluminum

plate subjected to a line loading. The history of the loading is a smoothed triangular

pulse of duration about 150�s and having frequency content of about 16 kHz. The

pressures exhibit an oscillatory behavior where the period of the zero crossings is

almost constant. Figure 3.2b looks at the system response function jĜj where the

pressure is related to the applied resultant load as p̂ = ĜP̂ . The most striking feature

of the pressure is the spectral peak in the vicinity of 5 kHz | this corresponds to

the coincidence frequency as discussed next. Note that the peak gets sharper further

away from the excitation site, and that there is more �ltering before the coincidence

frequency.

The coincidence frequency occurs when the phase speeds of the plate bending

wave and of the acoustic wave in the 
uid are equal [31, 32] and is given by

!c = c2a

s
�h

D
=

c2a
coh

q
12(1� �2) ; co �

s
E

�
; co �

s
B

�a
(3.9)

The signi�cance of the coincidence frequency is that wave components in the plate

above this frequency are radiated easily into the 
uid as seen in Figure 3.2. The
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coincidence phenomena depends on the extent of 
uid loading, thus it is useful to

have a measure of this loading. Following Reference [34], 
uid loading is charac-

terized by two independent parameters: a mass ratio � = �aca=�h! and a speed

ratio M = c=ca = ka=k. We have M = 1 at coincidence. Both parameters are fre-

quency dependent; we can arrange for only one parameter which is varied with ! by

introducing

� � �aca
�h!c

=
�a
�

co
ca
=
q
12(1� �2)

The parameter �, called the intrinsic 
uid loading parameter, is the same for all plates

of a given material embedded in a given 
uid. This is typically small with values such

as

steel/water: 0:130 ; aluminum/air: 0:002

In the examples that follow, we are primarily interested in the aluminum/air case.

3.3 Waveguide Modeling with Fluid Loading

Our goal here is to formulate the structural dynamics problem in terms of a waveguide.

If we can replace the wavenumber transform solution for the plate response given in

Equation (3.8) with a waveguide solution then that saves a summation operation.

But much more importantly, it allows us to terminate the waveguide and thereby we

are in a position to assemble complex structures. The di�culty is that while the e�ect

of the 
uid loading is that of a distributed pressure, it's non-local character makes

it di�erent from the pressure caused by a distributed spring, say, and hence we must

invoke special procedures.

To begin our construction of a plate waveguide, we ask if it is possible for free

waves to propagate in the plate immersed in a 
uid. That is, we seek wave solutions

for the plate of the form ŵ = ~we�ikx when the loading q is zero. This implies a

pressure response of

p̂ = ~p e�ikxe�ikzz ; kz �
q
k2a � k2 ; k2a �

!2

c2a

It must be borne in mind that as long as kz is chosen as above then irrespective of

the value of k the 
uid equations are satis�ed. When both ŵ and p̂ are substituted

into the governing equation we obtain the characteristic equation

(k2 � �2)(k2 + �2)� �a!
2

ikzD
= 0 ; �2 �

s
�rh

D
(3.10)
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The third term in the �rst equation describes the e�ect of the 
uid loading. A detailed

explanation of the signi�cance of each term is given by Crighton [34] and the roots of

this characteristic equation have been studied extensively in References [35, 36, 30].

Contour plots of the characteristic equation are shown in Figure 3.3. It is seen that

there are four dominant roots similar to a plane in a plate.

When the response of Equation (3.8) is viewed as a contour integral [37] in the

complex planes of Figure 3.3, it has contributions from the poles and a contribution

which arises from the branch cut associated with kz. This latter contribution is most

signi�cant at impact points and corners [34]. By neglecting this contribution, we

would then be in a position to replace the responses with just the pole contributions.

That is, we will have a waveguide representation. To quantify this contribution, we

consider the response of a 25mm thick steel plate in a 
uid of density 138 g=m3 and

modulus 0:37GPa subjected to the pulse line loading. This gives an intrinsic 
uid

loading of � = 0:020 which is an order of magnitude larger than the cases of actual

interest. Figure 3.4 shows the responses with and without the branch cut contribution.

The agreement of the two solutions is very good with some deviations occurring at

the load site that are primarily in the low frequency range. This is con�rmed at the

large x locations. We therefore conclude that in the case of an aluminum plate in air

the branch cut contribution can be neglected.

Numerical solutions for the roots of the characteristic equation are shown in Fig-

ure 3.5 as circles along with the in vacuum roots indicated as the dashed lines. These

plots, which are for 2:5mm aluminum plates in air, show that the 
uid loading pri-

marily has the e�ect of altering the imaginary part of the �rst mode. We see that at

coincidence and beyond, the e�ect is of increased viscous damping | this is consistent

with the observation that the 
uid is receiving more of the energy at these frequen-

cies. But otherwise the behavior is very similar to the in vacuum behavior. That is,

the pole contributions are associated with root k1 which corresponds predominantly

to the propagating 
exural wave, and with root k2 which corresponds predominantly

to an evanescent 
exural wave.

Making the assumption that there are only two dominant structural waves allows

us to obtain approximate analytical expressions for the roots as

k1 � �
vuut�2 + �a!

2

2Dikz1�2
; kz1 �

q
k2a � �2

k2 � �i
vuut�2 + �a!

2

2Dikz2�2
; kz2 �

q
k2a + �2 (3.11)
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These approximations are also plotted in Figure 3.5. There is very good agreement

with the exact numerical roots over the entire frequency range including the region

near coincidence.

By incorporating the 
uid loading term directly into the modi�ed spectrum rela-

tions, we are now in a position to replace the double summation wavenumber trans-

form solution by a single summation over frequency. This is useful when an enclosed

structure is viewed as having two distinct regions; an interior region and an exterior

region. The interior region has loadings due to both the 
uid and the radiation from

the vibration of other plates. However, the exterior region only experiences loadings

from the 
uid. Using the modi�ed spectrum relations, the 
uid loading for the ex-

terior problem can be accounted for without considering the 
uid response. In this

way, the solid/
uid interaction problem is partially decoupled.

We conclude this section by illustrating the di�erence the waveguide formulation

makes. The transverse displacement of one half of the in�nite plate with two forward

propagating waves is expressed as

ŵ(x) = Ae�ik1x +Be�ik2x

where k1 and k2 are the modi�ed spectrum relations presented in Equation (3.11).

The boundary conditions for this problem are that at x = 0 the slope of the plate is

zero (@ŵ=@x = 0) and the applied load is related to the shear by

�1
2
P̂ = V̂ = �D@

3ŵ

@x3

The response of the plate is then determined to be

ŵ(x) =
P̂

2Dik1(k21 � k22)

"
e�ik1x � k1

k2
e�ik2x

#
(3.12)

where most quantities are frequency dependent. This solution is to be compared to

Equation (3.8). The responses of Figure 3.4 were computed using this solution.

It is clear that the waveguide approximate modeling for plates in a surrounding


uid is accurate and e�cient.

3.4 Modeling of Finite Plates in a Fluid

We now illustrate how the waveguide modeling allows us to tackle the very di�cult

problem of the response of �nite plates in a 
uid.
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We begin by writing the general transverse displacement for a typical plate seg-

ment of length L in the form

ŵ(x) = Ae�ik1x +Be�ik2x +Ce�ik1(L�x) +De�ik2(L�x)

where A, B, C and D are constants to be determined from the boundary conditions

on the segment. Also, by using the modi�ed spectrum relations, we claim that this

adequately represents the behavior of a plate immersed in a 
uid. It is advantageous,

when dealing with �nite or multiply connected structures, to use a solution formu-

lation that already incorporates the connectivities. The end conditions on the plate

segment are

ŵ(0) = ŵ1 ;
dŵ(0)

dx
=  ̂1 ; ŵ(L) = ŵ2 ;

dŵ(L)

dx
=  ̂2

Solving for the coe�cients in terms of the nodal degrees of freedom allows the trans-

verse displacement of the plate to be re-written in the form of a collection of shape

functions

ŵ(x) = ĝ1(x)ŵ1 + ĝ2(x)L ̂1 + ĝ3(x)ŵ2 + ĝ4(x)L ̂2 (3.13)

The frequency dependent shape functions ĝj(x; !) are given as

ĝ1(x) = [r1ĥ1(x) + r2ĥ2(x)]=�

ĝ2(x) = [r1ĥ3(x) + r2ĥ4(x)]=�

ĝ3(x) = [r1ĥ2(x) + r2ĥ1(x)]=�

ĝ4(x) = �[r1ĥ4(x) + r2ĥ3(x)]=�
r1 = i(k1 � k2)[1� e�k1Le�k2L] ; r2 = i(k1 + k2)[1� e�k1Le�k2L]

(3.14)

where � = �(r21 + r22) and

ĥ1(x) = +ik2[e
�ik1x � e�ik2Le�ik1(L�x)]� ik1[e

�ik2x � e�ik1Le�ik2(L�x)]

ĥ2(x) = �ik2[e�ik2Le�ik1x � e�ik1(L�x)] + ik1[e
�ik1Le�ik2x � e�ik2(L�x)]

ĥ3(x) = [e�ik1x + e�ik2Le�ik1(L�x)]� [e�ik2x + e�ik1Le�ik2(L�x)]

ĥ4(x) = [e�ik2Le�ik1x + e�ik1(L�x)]� [e�ik1Le�ik2x + e�ik2(L�x)]

As an example, the shape functions ĝ1 and ĝ02 are shown plotted in Figure 3.6 for

a number of frequencies. The shape functions occur in pairs where ĝ3 and ĝ4 are

the mirror images of ĝ1 and ĝ2, respectively. These shape functions are comparable

to those of the conventional �nite element method except that they are frequency

dependent and can represent very large areas. References [11] illustrate how these are

used as the basis for the spectral element representation of the folded plate structures,

these references also show the assemblage procedures.
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What we want to look at here is how a typical plate segment radiates pressure

into the 
uid. The challenge we have here is to match the motion of the �nite plate

to that of the 
uid. But the domain for the 
uid is (at least) the half space z > 0 and

�1 < x < 1 which is considerably larger than the length of the plate. Therefore,

to match the plate and 
uid boundaries, we must extend the plate boundary in the

x direction. If the �nite plate is ba�ed, that is, extended on both sides with very

sti� material, then the displacements can be matched by imposing w = 0 outside of

the �nite plate. We will assume that this can always be done even if the plate is not

physically ba�ed but is attached to other plate segments. The schematic is shown in

Figure 3.1b.

At the surface of the plate, z = 0, the 
uid displacement must be equal to the

plate displacement. By extending the plate de
ection over the full space window of

the 
uid, we can then give it the spectral representation

ŵ(x) =
X
m

~wme
�i�mx

Applying this to the shape functions gives

~wm = ŵ1~g1m + L ̂1~g2m + ŵ2~g3m + L ̂2~g4m ; ~gjm =
Z
W
ĝj(x)e

�i�mxdx (3.15)

These integrals are easily evaluated since ĝj(x) contain only exponentials. The shape

functions ĝj(x) are zero outside the length of the plate element; this is equivalent to

assuming each �nite plate segment is ba�ed to in�nity. The continuity of wj and  j

between segments ensure continuity of the 
uid �eld. The response of the 
uid now

has the spectral representation

ŵ(x; z) =
X
m

~wme
�ikzze�i�mx ; p̂(x; z) =

X
m

�a!
2

�ikz ~wme
�ikzze�i�mx ; kz �

q
k2a � �2m

These, in combination with Equation (3.15), relate the 
uid response at any point to

the plate nodal degrees of freedom. If there are many plate segments, then the total

response would be the sum of the contributions from each segment. We will illustrate

these formulas with the example of a �nite plate.

In piecing together the solution for the �nite plate of Figure 3.1c, we treat the

plate as having two segments with the boundary conditions

segment 12: w1 = 0 1 = 0; w2 = wo;  2 = 0

segment 23: w1 = wo;  1 = 0; w2 = 0 2 = 0
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This leads to the solution for the 
uid displacement written in terms of the central

de
ection of the plate as

ŵ(x; z) = ŵo
X
m

h
~g3me

�i�m(x+L) + ~g1me
�i�mx

i
e�ikzz

Note that the representation for the �rst plate segment must be shifted an amount

L. The pressure is given by

p̂(x; z) = ŵo
X
m

�a!
2

�ikz
h
~g3me

�i�m(x+L) + ~g1me
�i�mx

i
e�ikzz

The shear relation at the load location is 1
2
P̂ = �V̂ = Dŵo

000. This gives the central

de
ection as

ŵo =
P̂

2Dĝ1000(0)

With reference to Figure 3.1c, it is worth emphasizing that although w is physically

continuous at Node 2, the above representations have a discontinuity. That is, seg-

ment 12 is discontinuous to the right while Segment 23 is discontinuous to the left.

Hence this example is a good �rst test case of our scheme.

To test the validity of our approximations, a planar �nite element model of a

ba�ed plate in a 
uid was constructed for the problem shown in Figure 3.1c; only

a �nite 
uid domain was modeled. The plate is 25mm thick steel and the 
uid has

the properties such that � = 0:02. Figure 3.7 shows a comparison of velocities of the

plate and the 
uid. The agreement is quite good up to the time when re
ections come

from the far boundaries of the 
uid | the spectral solution has no such boundaries.

The agreement is especially good for our purpose when it is realized that the 
uid

loading corresponds to a loading factor nearly ten times that of our cases of interest

of aluminum plates in air.

These equations were also applied to the case of a �nite 2:5mm thick aluminum

plate in air. The responses for the plate are shown in Figure 3.8; the presence of

multiple re
ections are obvious. Figure 3.9 shows the corresponding frequency domain

behavior where the re
ections give rise to multiple spectral peaks. Also shown are

the resonance frequencies for a vibrating plate in vacuum, it is clear that the impact

has excited many of the symmetric modes of vibration. The pressure responses for

the 
uid can also be seen in Figure 3.8. Similar to the plate response, these indicate

the presence of multiple re
ections occurring in the plate. This �gure also indicates

that the ba�ed �nite plate not only excites the 
uid directly in front of it but also at

a distance along the ba�e. The pressure at x = 2L; z = 0 is non-zero even though

the plate is ba�ed at that location | this is further indication that, in 
uids, the
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relation between the pressure and displacement is non-local. The frequency domain

depiction of these responses is shown in Figure 3.9. It can be seen that the frequencies

at which the structural resonances were present in Figure 3.9 are readily transmitted

into the 
uid.

Intuitively, we might have thought that the response should be largest along a

line normal to the plate. The responses shown in Figure 3.8 indicate that this is not

so. Furthermore, Figure 3.9 shows that it is even frequency dependent. Figure 3.10

shows the directivity patterns at a number of frequencies; the near �eld behavior was

computed from the full solution with r = 2L. It is clear that these patterns are very

sensitive to direction when the frequency gets close to coincidence. Also shown are

the de
ected shapes of the plate at each frequency. These shapes indicate an almost

sinusoidal plate de
ection except at the center and edges | these are the points of

signi�cant radiation.

3.5 Discussion

The methods discussed in this chapter is a �rst step in extending the spectral element

method to include structure/
uid interaction problems. The key step is that by

incorporating the 
uid loading into the spectrum relations allows us to maintain

the element formulation. This is important because the spectral element approach

presents itself as a well founded matrix method that embodies a number of e�ciencies

we have long associated with the conventional �nite element method. For the range of

problems they are suited for, the spectral elements have been shown to conveniently

model wave propagation in structures made of multiple panels. Furthermore, the

spectral element is eminently suited for hosting on massively parallel computers [28,

21].

There are many more developments needed. The most important of them are:

verify the radiation approximation from re-entrant edges, implement radiation from

curved surfaces, and, implement the book-keeping necessary for solving reverberation

in a enclosed space.
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Figure 3.1: Geometries of the plate structures with 
uid loading. (a) Schematic of
cross-section of folded plate structures of interest. (b) Treatment of plate connections
as ba�ed extensions. (c) Modeling of a �nite ba�ed plate as two plate segments.
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Figure 3.2: Time and frequency domain responses for the line loading of an in�nite
plate. (a) Fluid pressures p(x; z = L; t). (b) System response function jĜ(x; z = L)j
for pressure.
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Figure 3.4: Comparison of the wavenumber transform solution to the waveguide
solution that neglects the branch cut contribution.
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0

2(x) (bottom) for a number of frequen-
cies.



68

0. 200. 400. 600. 800.
Time [us]

FEM
Spectral

z=000mm x=000mm

z=100mm

z=200mm

z=000mm x= 50mm

z=100mm

z=200mm

z=000mm x=200mm

z=100mm

z=200mm

Figure 3.7: Response with modi�ed spectrum relations and comparison with �nite
element solution.



69

0. 2000. 4000. 6000. 8000.

Time [µs]

x=0

x=0.25L

x=0.50L

x=0.75L

(a)

0. 2000. 4000. 6000. 8000. 10000.

x=0 z=L

x=L z=L

x=2L z=L

x=2L z=0

(b)

Figure 3.8: Time domain responses for a line loaded aluminum plate of length 2L =
500mm. (a) Plate responses _w(x; t), (b) 
uid pressures p(x; z = L; t).
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